Learning Outcomes

<table>
<thead>
<tr>
<th>The student should be able to</th>
<th>Assessment Criteria</th>
</tr>
</thead>
</table>
| 1 Understand the structure and function of the cardiovascular system | 1.1 Describe the structure of the cardiovascular system, including heart, arteries, veins, capillaries and blood
1.2 Describe the functions of the main components of the cardiovascular system |
| 2 Understand the structure and function of the respiratory system | 2.1 Describe the structure of the respiratory system
2.2 Describe the functions of the main components of the respiratory system |
| 3 Understand the processes involved in energy release, aerobic and anaerobic | 3.1 Describe the role of the cardio-respiratory system within the energy-release process
3.2 Explain the role of beta oxidation in the breakdown of fats to supply energy
3.3 Explain the role of fuel (glucose) within the energy-release process
3.4 Explain the process of aerobic respiration, including: glucose, ATP and waste products
3.5 Explain the process of anaerobic respiration, including: glucose, lactic acid and oxygen debt
3.6 Distinguish between sporting activities that would use aerobic and those that would use anaerobic respiration |

Assessment Methodology

A formal unseen two-hour written examination.

Grading of this Unit

The following grade descriptors will be applied to the assessment of this unit:

1. Understanding of the Subject
2. Application of Knowledge
3. Application of Skills
4. Communication and Presentation
5. Autonomy and/or Independence
6. Quality

Please refer to the QAA Grade Descriptors for detail of the components of each descriptor.

Indicative Content

Please note that the indicative content supplied below is intended as a suggested guide only. It is not meant to be a prescriptive, exhaustive or fully delivered content list.
Learning Outcome 1

Structure: heart (endocardium, myocardium, epicardium, atria, ventricles, bicuspid valve, tricuspid valve, aortic valve, pulmonary valve, aorta, superior and inferior vena cava, pulmonary vein, pulmonary artery); blood vessels (arteries, arterioles, capillaries, veins, venules), vasodilation, vasoconstriction; blood (composition – plasma)

Function of the cardiovascular system: delivery of oxygen and nutrients; removal of waste products; thermoregulation; function of blood (oxygen transport, clotting, fighting infection); cardiac cycle (sino-atrial node (SAN), atrio-ventricular node (AVN), atrio-ventricular bundle – Bundle of His, Purkinje fibres; effect of the nervous system (sympathetic and parasympathetic)

Learning Outcome 2

Structure: nasal cavity; epiglottis; pharynx; larynx; trachea; bronchus; bronchioles; lungs (lobes, pleural membrane, pleural cavity, parietal pleura, thoracic cavity, visceral pleura, pleural fluid, alveoli); diaphragm; intercostal muscles (external and internal)

Function: transport, e.g. oxygen, carbon dioxide, haemoglobin, oxy-haemoglobin; mechanisms of breathing (inspiration and expiration, respiratory volumes – tidal volume, inspiratory reserve volume, expiratory reserve volume, vital capacity, residual volume, total lung capacity); control of breathing (neural control, chemical control)

Learning Outcome 3

Exercise: aerobic; anaerobic

Energy system responses: adenosine triphosphate production; creatine phosphate and lactic acid system; anaerobic glycolysis, mitochondria; Krebs cycle; electron transport chain

Fatigue: aerobic and anaerobic: depletion of energy sources, e.g. creatine phosphate, muscle and liver glycogen; effects of waste products, e.g. blood lactate accumulation, carbon dioxide, increased acidity

Anaerobic activities: explosive activities – athletics track and field – sprint, throwing, jumping events, golf swing, tennis serve, cycle sprint track, BMX and road

Aerobic activities: long-distance swimming, running, cycling, walking; importance of aerobic base for all sports