Biology

Macromolecules and Key Biological Principles

10197 (Examination)
10198 (Alternative assessment)

GRADED
ACADEMIC SUBJECT CONTENT

<table>
<thead>
<tr>
<th>Credit Value of Unit 6</th>
<th>GLH of Unit 60</th>
<th>Level of Unit 3</th>
</tr>
</thead>
</table>

Learning Outcomes

<table>
<thead>
<tr>
<th>The student should be able to</th>
<th>Assessment Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Demonstrate an understanding of the structure and function of major macromolecules</td>
<td>1.1 Describe, using examples, the role of major macromolecules and their importance in functioning of the cell.</td>
</tr>
<tr>
<td>2 Demonstrate an understanding of simple Mendelian inheritance mechanisms</td>
<td>2.1 Describe the key aspects of inheritance determined by chromosomal genes</td>
</tr>
<tr>
<td>3 Demonstrate an understanding of the process of cellular respiration</td>
<td>3.1 Describe key aspects of the biochemistry of cellular respiration</td>
</tr>
</tbody>
</table>

Assessment Methodology

A formal unseen two-hour written examination.

Grading of this unit

The following grade descriptors will be applied to the assessment of this unit:

1. Understanding of the subject
2. Application of Knowledge
3. Use of Information
4. Communication and Presentation
5. Autonomy and/or Independence
6. Quality

Please refer to the QAA Grade Descriptors for detail of the components of each descriptor.
Indicative Content

Nucleic Acids

Structure of DNA, mRNA and tRNA; semi conservative replication of DNA; importance of base sequence as genetic code; organisation of DNA into chromosomes through super coiling and association of histone proteins and the importance of this level of organisation in mitosis and meiosis.

Protein Synthesis

Importance of DNA, mRNA, tRNA and ribosomes in transcription and translation; example of errors in the genetic code and resulting protein structure e.g. sickle cell anaemia.

Mendelian Inheritance

The importance of meiosis in determining inheritance ratios - haploid gametes, independent assortment and crossing over; the importance of genetic variation in evolution; monohybrid inheritance ratios as found in autosomal and sex linked inheritance patterns.

Carbohydrates, Lipids and Proteins.

Carbohydrates: chemical composition; structure- monosaccharides (glucose), disaccharides (sucrose) and polysaccharides (starch and glycogen); role in metabolism - energy production, storage, structure and cell recognition and signalling.

Lipids:
- Fats- chemical composition; glycerol and fatty acid components; triglycerides; role in metabolism- energy storage, insulation and cushioning of vital organs.
- Phospholipids- glycerol, fatty acid and phosphate group components; hydrophobic and hydrophilic components; role in cells- major constituents of cell membranes.
- Steroids- four fused carbon rings; role in metabolism- e.g. cholesterol as precursor of sex hormones and component of cell membrane.

Proteins: chemical composition; primary, secondary, tertiary and quaternary structure; peptide bonds; role in metabolism- storage, membrane transport, signalling (chemical messengers), chemical signalling (receptor proteins); movement (contractile proteins), defence (antibodies), catalysis (enzymes).

Enzymes

Importance of tertiary structure of protein; biological catalysts lowering activation energy of a reaction; work in sequence to enable both catabolic and anabolic reactions to occur; theories of action (lock & key and induced fit); influence of temperature, pH and inhibitors on action.

Cellular Respiration

Anaerobic and aerobic respiration in production of ATP as universal energy source in cells; outline of glycolysis, Krebs Cycle and oxidation phosphorylation without detailed knowledge of enzymes involved.

Validation end date: 31 August 2019